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S U M M A R Y  
An efficient numerical method, used previously for linear differential equations [-1], is here extended to systems of 
nonlinear ordinary differential equations. Spline functions are used as the basic approximations. Residuals are liqui- 
dated by setting their integrals equal to zero over specified subintervals of the intervals of analyticity. Several diverse 
examples are given. 

Notation 

a 

[c3] 
[c;'] 
E 
F, 
L 
R 
T 
[ r ; ]  
r " ]  J 

Radius of circular membrane 
An unsymmetrical 4 x 4 matrix, defined by Eq. (6) 
An unsymmetrical 6 • 6 matrix, defined by Eq. (8) 
Young's modulus 
Algebraic or transcendental functions 
Differential operator 
Closed interval 
Dimensionless radius stress for the circular membrane 
The transpose of the row matrix [y j_ ~, y)_ ~, y j, y~] 

. . . .  y,q The transpose of the row matrix [y;_ ~, Y;-1, Yj- I ,  Yj, Yj, ) j  
Residual 
Poisson's ratio 

1. Introduction 

Problems involving one independent real variable x and one or more dependent real variables 
are considered. The range ofx is a closed interval R = In, b]. 

Approximations introduce error terms, called residuals. For problems of ordinary differen- 
tial equations, the residuals are functions of x and of certain parameters (p~, P2, . . . ,  Ps) whose 
values are to be chosen to liquidate the residuals in some sense. If e is a residual, the simplest 
method is to set e = 0 at selected points in R. This is the collocation method. With the partition 
method [7], the interval R is divided into subintervals Ra, R 2 . . . .  , Rm, and the following 
conditions are imposed: 

[ e (x ,p  1 . . . . .  ps )dx=O;  j = l ,  2 , . . . ,m.  (1) 
2 Rj 

Ire is not identically zero in R~, Eq. (1) requires that it take both positive and negative values 
in R~. Therefore, if e is continuous, it vanishes at one or more points in Rj. Hence, the partition 
method satisfies the conditions of the collocation method automatically. Also, it balances the 
positive and negative values of e against each other. As a result, the partition method is usually 
more accurate than the collocation method. 

If the dependent variables are approximated by spline functions [2, 3, 4, 5], the interval R 
is divided into links in each of which the splines are analytic. For applications of the partition 
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method, the intervals Rj are then conveniently taken to be certain subdivisions of these links. 
The partition method, or any other parametric method, reduces the problem to a set of 

algebraic or transcendental equations, 

Fi(Pl, P2 . . . . .  Ps) : 0; i = 1, 2 . . . . .  s .  (2) 

If the differential-equation problem is nonlinear, some of the functions Fi are nonlinear. 
A well-known method of successive extrapolations [10] has proved to be effective for solving 

Eq. (2). For short, the vector (p 1, P2 . . . . .  Ps) is denoted as p. An initial estimate of the solution of 
Eq. (2) is pO. By Taylor's theorem, 

F~(p) = Fi(p ~ + ~ (Pk-P~ ~ + remainder (3) 
k=l  

where (~Fi/@k)O denotes the value of the designated derivative at pO. Dropping the remainder, 
and setting F~(p) = 0, for i=  1, 2 . . . . .  s, we get linear equations that determine Pk" These values 
are used as the revised approximatio/a pO, and the process is repeated. The detailed discussion of 
convergence of this method can be found in reference [13]. In the subsequent examples, this 
method converges satisfactorily in less than nine iterations. 

2. Construction of a Smooth Polynomial Chain 

A finite closed interval [a, b] of the x-axis is divided into n parts by points x j, such that 

a = X o <  Xl< x2... < x , - i <  x , =  b.  

A chain of linear functions with prescribed ordinates yj at points xj is represented in matrix 
notation by 

[YJ-11 (4) 37 = El, x] �9 [Cj] " YJ 

where 
- -  X j_  

[ C J ] = ( x j - x j - I ) - I  [ -~J  1 1" 

More generally, a polynomial y = f ( x )  of degree 2p + 1 is determined uniquely if the values of 
y, y', y", ..., y~P) are given for x = x j_ 1 and x = x;, where primes denote derivatives and (xj _ 1, x;) 
are any distinct points. An interpolation formula of Fort  [6] determined this polynomial. It 
is a generalization of Hermite interpolation [7]. Ifp = 1, the required polynomial is 

37 = [1, x, x 2, x a ] . [ C ' j ] . [ r } ]  (5) 

where [1, x, x e, x 3] is the indicated row matrix, [ Y)] is the column matrix that is the transpose 
of the matrix [yj_ 1, Y)- 1, Yj, Y}], and [C}] is an unsymmetrical 4 x 4 matrix, defined as follows : 

Column 1 = (x j -  x j_ 1) -3 [x} (x j -  3x j_ 1), 6x j_ l  x j, - 3 (x j_ l  + x j), 2] (6) 

Column 2 = (x j -  x j_ l ) -  2 [ _ x j_l  x}, xj (2x j_l  + x~), - (x j_ l  + 2x j), 1 ] .  

Columns 3 and 4 are like Columns 1 and 2, respectively, except that xj  and x j_ 1 are inter- 
changed throughout in Eq. (6). It is to be noted that the matrix [C}] is determined solely by xj  
and x j_ 1. When the partitioning of the interval [a, b] is specified, the matrices [C}] may be 
computed. There is one [C']-matrix for each interval. Thus, a smooth chain of cubic poly- 
nomials is constructed. 

Ifp = 2, the required polynomial is 

37= [1, x, x 2, x a, x 4, x s ] . [ C ) ' ] . [ Y T ]  (7) 

where [Y}'] is the transpose of the row matrix [Yj-1, Y)-I, Y]-I, Yj, Y), Y)'] and [C7] is an 
unsymmemcal 6 x 6 matrix, defined by: 
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Column 1 : (x j -  x j_ 1)-5 ix  3. (lOx~_ 1 - 5x j_l xj + x~), - 30x~_ 1 x~ j 

30X j _ l  Xj (X j-S[ -~ X j), -- 10 (x~_ 1 + 4 x  j _ l  x j  -~ X2), 15 (Xj-t + x j), - 6 ]  

Column 2 = (x~- x j_ 1)-" [x j_l x} (4x j_l  - x~), x~ (xj + 2x j_ 1)(x j -  6x j_ l ) ,  

6x j_ i xj (2x j_ 1 + 3x j), - 2 (2x~_ 1 + lOxj_ 1 xj  + 3x~), 7x j_ ~ + 8x j, - 3] 

Column 3 1 - 3 2 3 2 = ~ ( x j -  x i_ 1) Ix j_ l  x j, - x j-1 x~ (3x j_l + 2xj), xj (3x~_ 1 + 6x j_l xj + x~), 

- ( x } - i  +6xj - lx i+3xZ) ,  2x~_1 +3xj, - 1].  (8) 

Co2umns 4, 5, 6 are like Columns 1, 2, 3, respectively, except that x~_ ~ and xj are interchanged 
thr~ mghout in Eq. (8). Thus, a chain of fifth-degree polynomials is constructed with continuous 
firs:: and second derivatives. 

3. Nonlinear Ordinary Differential Equation 

A second-order differential equation 

L(y) = f ( x )  (9) 

is to be satisfied in a finite closed interval [a, b], where L is a nonlinear (or linear) differential 
operator. Two boundary conditions are imposed. By hypothesis, there is a unique solution. 
The interval [a, b] is partitioned into n parts as described previously. A piecewise cubic 
approximation of the solution is represented by Eq. (5); i.e., 

37 = [1, x, x2, x3] �9 [C~] �9 [Y~] (10) 

For  convenience, let [ y,-ljj = 

where 
I 

t/),1-] 
/]J,2 / 
~J,3 / 
qj,4_l 

! ! 
t] j , l~Yj_l ,  l']j,2=Yj_l, tlj,3=Yj and rl~,4=yj. 

Then 
]~ : gj, l~j , l  @gj,21~j,2-~gj,3~j.3Awgj,4qj,4 

o r  
4 

; -- x___ xj) 
i=1  

where 
0,., = + (c;)2,x + ( c 3 3 S  + (c ; ) , ,x  3 

Substituting Eq. (12) into Eq. (9) we have 

(11) 

(12) 

i = l ,  2, 3, 4.  (13) 

L ( 3 7 ) = L ( ~  g j . ~ q j . t = f ( x ) + e ( x  ) (x~_.~<-x<xj) (14) 

where e(x) is the residual resulting from the approximation. If e(x) were identically zero, 37 
would be the exact solution. Although this condition is generally unattainable, it is possible to 
set e(x)= 0 at 2n points in the interval [a, b]. Then, with the boundary conditions, 2n+ 2 
nonlinear algebraic equations are obtained for the unknowns (y j, y~);j=0, 1 . . . .  , n. This is the 
collocation method. 

A more accurate procedure that often is as easy to apply as the collocation method is the 
partition method [7]. For  a second-order differential equation each interval [x~_ t, xj] is 
divided into two parts by a point ~, chosen so that x j_ 1 < ~j< xj. Then the definite integral 
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S e(x)dx is set equal to zero for each subdivision. Thus, 2n equations are obtained. Then, with 
the boundary conditions, there are enough equations to determine all the unknowns (Yi, Y))" 
In some cases, a minor difficulty arises because the integrals cannot be evaluated in closed form. 
However, numerical integration can be used. 

The foregoing method applies also to systems of nonlinear (or linear) differential equations. 
For instance, three such differential equations are represented by 

L,x(u)+L~2(v)+L~3(w ) = f~(x) ; r = i ,  2, 3 (is; 

where L~ is a second-order nonlinear (or linear) differential operator. Again, the interval 
[a, b] is divided into n parts by points xs, and each part is divided in two by a point ~j. The 
functions u, v, w are approximated by 

= [1, x, ~ ,  x~]. [c~]. [u~] 
= [1, x, ~ ,  ~ 3 .  [c)].  [v~3 

+ = [1, x, x 2, x 3 1 " [ C S l  "[W)] 
(16) 

Here [U)] is the column matrix [u j_ 1, u~_ 1, u j, u)], etc. Equations (16) are substituted int(, 
Eq. (15), and the integrals of the residuals over each part are set equal to zero, as before. Thu~,~ 
6n nonlinear (or linear) algebraic equations are obtained, and with the six boundary conditions, 
there are enough equations to determine all the unknowns. 

A third-order differential equation, LI(y) = f(x), can be reduced to one first-order and one 
second-order differential equation by the substitution y' = u. A fourth-order differential equa- 
tions Lz(y ) =f(x) ,  can be reduced to two second-order differential equations by letting 
y"=  u. The piecewise cubic approximation consequently serves for third and fourth orde: 
differential equations. 

Innumerable variations of the preceding method can be devised. The methods of Ritz, 
Galerkin, least squares, or orthogonality [7] might be used instead of collocation or partition, 
or several of these methods might be combined. By suitable substitutions, any system ef 
differential equations can be reduced to the first order. Then piecewise linear approximations 
can be used Eq. (4). On the other hand, equations of the third or fourth order might be handled 
conveniently by piecewise quintic approximations, in accordance with Eqs. (7) and (8). An 
obvious difficulty occurs if the interval [a, b] is infinite, but, if the solution attenuates the in- 
finite interval can be replaced by a finite one. 

An advantage of the present method is that it yields directly the first derivatives in the case 
ofa piecewise cubic approximation, or the first and second derivatives in the case ofa piecewise 
quintic approximation, in addition to the value of the function. In physical problems, the value s 
of the derivatives are often required. 

Example 1. Second-Order Nonlinear Differential Equation (Boundary Value Problem) 

L(y)=yy"+y 'Z-a  2 = 0 ;  y (0 )= l ,  y (1 )=2 .  (17) 

By Eq. (14) 

L(;)= (,~g~,i~j.i)(,=~lg~mj,,)+ (,~ g~,m~,,/~-a2 = ~(x), (xj_l <=x<=xj) (1~) 

Integration yields 

I L(~)dx= j;~(x)dx (1~) 
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o r  

) *j H , " f (g2,1 gj.  +gj, x  )dx + 
J 

gj, agj,2 gj.2gj,1 + 2gj, lgj ,2)dxtl j ,  ltlj,2 

. + " , 
gj,1 g),3 g).3gj, a + 2g~,lgj,3)dxtlj,  ltlj,3 

. + . . . .  
gj,~gj,4 gj.4gj.l + 2g3,,*gj,~)dxtlj,~tlj.4 

(gj, zg'j,3 + gj,3g~',z + 2gS,2g~,3)dxqj,2qj,3 

,, + . . . .  
gj,2gj,4 gj,~gj,z + 2g j,2 gj,,r t~j,4 

(gj,3gj,3+ ,2 2 " gj,3)dxtb, 3 

(gi, a g)'.4 + gj,,~ g'j,3 + 2g~,3 g).4) dx q j,3 q2,4 

(20) 

The interval [0, 1] is divided into n parts by points, 0 = X o <  xl  < ... < xn = i and an interme- 
diate point ~j is inserted in each part. 

Points ~i were chosen as the midpoints of the intervals i.e., for n = 2 ~ 1 = �88 and ~2 = �88 Set the 
integral of the residual equal to zero in each subinterval. Then four equations are generated 
from Eq. (19). Two more equations are given by the boundary conditions y (0) = 1 and y (1) = 2 ; 
this implies ql,~ = 1 and q2,3 =2.  The six unknowns, th, t/2, q3, q4, t/5 and/~6 can be determined 
from the above 6 nonlinear algebraic equations by the iteration method. A computer program 
was written to solve the problem for various values of n with intervals of equal (or unequal) 
length. If the maximum differences of absolute values of solutions of two successive iterations is 
less than (.00001), the solution is considered to be suitable. Table 1 shows the results for different 
n. The convergence of the iteration process is very fast ; hence it does not use much computer 
time. For this example all initial estimates were taken to be 0.5, and the allowable maximum 
difference for two consecutive iterations was taken as small as 0.00001. At most seven iterations 
were required to get final results for different n. Some of the examples which are given later need 

TABLE 1 

Solution of eq. (17)for a=2 
Exact solution is y = ~ t - 1  

xj 0.00 0.20 0.25 0.35 0.50 0.70 0.75 0.85 1.00 

[y,j 1.00000 0.97980 1.00000 1.06771 1.22474 1.50333 1.58114 1.74356 2.00000 
Exact 

~yj -0 .50000  0.30619 0.50000 0.84293 1.22474 1.52994 1.58114 1.66326 1.75000 

Z / y  j 1.00000 - -  - -  - -  1.22526 - -  - -  - -  2.00000 
n = 2 y~ - 0.50197 - -  - -  - -  1.22262 - -  - -  - -  1.74902 

Partition 
and [ yi 1.0000 - -  0.99998 - -  1.22476 - -  1.58115 - -  2.00000 

"(J~" methoditerati~ [] { -0 .50009 0.49992 - -  1.22465 - -  1.58107 - -  1.74995 

yj 1.00000 0.97979 - -  1.06770 1.22474 1.50333 - -  1.74356 2.00000 
n = 6  ),~ -0 .50000 0.30617 - -  0.84292 1.22474 1.52993 - -  1.66326 1.74999 
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only three or four iterations. In general, most problems do not exceed ten iterations, even with a 
large number of unknowns and a poor initial estimate. 

Example 2. Third-Order Nonlinear Differential Equation (Boundary Value Problem) 

L(y) = x 3 y y ' "+  3x 3 y 'y"+  9x2y y " +  9x 2 y'2 + 18xy y'+ 3y 2 = 0 (a) 

and 

y(1)= 2, y'(1)= - 2  and y"(2)-0.46404. (b) 

The general solution ofEq. (a) is 

x 3 yZ = C1X 2 -}- C2 x  @ C 3 

The piecewise quintic polynomial approximation is well adapted to this problem. However, 
piecewise cubic polynomials will be used in order to show that lower order spline functions can 
be used to approximate the solutions of higher order nonlinear differential equations, and to 
illustrate how the partition method can be employed to solve a system of simultaneous differ- 
ential equations. 

The substitution z = y' reduces Eq. (a) from third order to second order. Then, the differential 
equations which are to be solved are 

x 3 yz" + 3x 3 zz' + 9X 2 yz' + 9X 2 Z 2 -t- 18xyz + 3y z = 0 (C) 

y'--Z= 0 

The boundary conditions (b) become 

y = 2  at x = l  

z = - 2  at x = l  

z '=  0.46404 at x =2  (d) 

The interval [1, 2] is divided into ten parts, and intermediate points ~j are inserted at the 
centers of the parts. Since Eqs. (c) contain two dependent variables, y and z, the approximations 
a r e  

37---[i, x, x 2, x 3] [C)]  ]-Y)l 
= [1, x, x 2, x 3] [C}] [Z;] (e) 

Equations (e) are substituted into Eqs. (c), and the integrals of the residuals over each subdi- 
vision are set equal to zero. Thus 40 nonlinear algebraic equations are obtained for (y j, y), 
zj, z)), j = 0, 1, 2 . . . . .  10 by applying Eq. (19). Three more equations result from the boundary 
conditions. One more equation can be obtained by setting e(x) = 0 at any one partition point or 
by setting the sum of the integrals of the residuals is equal to zero over a subinterval which is 
different from the previous ones. For the computations, we arbitrarily set H = (xl -Xo)/3 and 
selected the subinterval (xo + H, xo + 2H). The 44 unknowns can be determined from the 44 
nonlinear algebraic equations by using the iteration process described in the Introduction. The 
numerical solution and exact solution are given in Table 2. Table 2 shows that yj and y} are 
almost identical with the exact solution up to five decimal places, and the maximum error of 
y~ is 0.00006 at x = 1. 

If z = y" were introduced instead of z = y', the problem would again be solvable. Thus, the 
third derivatives y"' could be obtained at the junctions of the parts. 

Example 3. Nonlinear Boundary Value Problem for the Circular Membrane 

A circular membrane of radius a and thickness t is subjected to a normal pressure p(r), where r 
is the radial coordinate. If the deformation is axisymmetric, the radial and circumferential 
membrane stresses o'~ and ao and the radial and normal displacements U and W are functions 
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ofr  only, the circumferential displacement and the shear stress vanish. Then F6ppl's membrane 
equations [8] can be reduced to the single nonlinear ordinary differential equation for the 
dimensionless radial stress a, [9] 

Q 
L(~) = (x3cr') ' + ~ = 0 (a) 

where x =r/a, 0< x <  1, a (x )=  ar(r)/E 

Q (x) =- (p(:)/E) ~ d > 0 (b) 
0 

1 
Qo = 2t2 a 2 

and E is Young's modulus. 
We consider the case p (r) = constant. Then from Eq. (b) 

1 [Pa \  2 3 
x .  (c) 

A new dependent variable T is defined by 

r (x)  2 ~(x) = (pa ~ "  (d) 

\Et/ 
Then the boundary value problem is reduced to 

L(T)  = (x 3 T ' ) '+x3 /T  2 = 0; T'(0) = T'(1)+(1 - v ) T ( 1 ) =  0 (e) 

For the numerical computations, Poisson's ratio v was set equal to 0.32. The interval (0, 1) was 
partitioned into 5 equal parts, and the points ~j were chosen as the centers of the parts. Equa- 
tions (19) and their counterparts for the intervals (~j, x j) provide 10 equations for Tj and T). 
The boundary conditions 

T'(0) -- T'(1) + (1 - v )  T(1) = 0 

give two more equations. Thus Tj and T) were determined at the net points x = 0, 0.2, 0.4, 0.6, 
0.8 and 1.0. The numerical solution is given in the following table. 

xj 0.0 0.2 0.4 0.6 0.8 1.0 

Tj 0.8676 0.8613 0.8385 0.8008 0.7462 0.6695 

T) 0.0000 -0.0890 -0.1591 -0.2333 -0.3262 -0.4553 

Since the differential equation (e) for the circular membrane is singular, Keller's theorem [11] 
does not apply. The shooting method was applied to obtain a numerical solution of the fixed- 
edge membrane with uniform normal pressure by L. Bauer [9]. The largest value of the dimen- 
sionless radial stress T is 0.8676 at x = 0. The comparison of the present results and those of the 
shooting method are shown in Figure 1. 

Example 4. Initial-Value Problem 

If a second-order differential equation is to be solved with initial values (Yl, Y~), the vanishing 
of the integral of the residual of the cubic approximation over the two subdivisions of the f i rs t  
interval provides two equations which determine (Y2, Y~). Then the same process, applied to the 
second interval, determines (Y3, Y;) and so on. 
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Figure 1. Variation of the dimensionless radial stress T. v=0.32. 
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As an example, the following problem is considered : 

X L(y)=xy" +yy'2-3y'=O; y(1 )= l ,  y ' ( 1 ) = l .  (a) 

With xl = 1, Yl = 1, y] = 1, x2--1.5, 4= 1.25, Eq. (19) and its counterpart for the segment 
(1.25, 1.5) yield two equations for (Y2, Y~). The solution is Y2 = 1.74109, y~ = 1.93855. Then, with 
these starting values and x2= 1.5, 4= 1.75, x3=2, a similar calculation gives y3=2.91548, 
y~ =2.74398. Likewise, stepping from x3 =2 to x4=2.5, and then from x4 to x5 =3, and so on, 
we get y4 =4.47574, y~ = 3.49122, Y5 = 6.40328, y~ =4.21680. 

In Table 3, the values corresponding to x = 1, 2, 3, 4 were computed by the preceding 
method, with steps of unit length. Then the intermediate values were obtained by solving three 
boundary-value problems. For example, the values at x = 2.2, 2.4, 2.6, 2.8 were computed by 
using a piecewise cubic approximation with five links in the interval [-2, 3], and adapting it to 
the boundary conditions, y(2) = 2.91551, y(3) = 6.40320 which are given in Table 3. The parti- 
tion method was again applied to Eq. (a) to solve this problem. This method of interpolation 
appears to be preferable to progressive projections over short steps. 

Example 5. Van Der Pol's Equation 

According to  the mode of production of the non-linear variable damping, there exist two 
principal types of non-linear self-excited oscillations governed by (1) Van der Pol's equation 
and (2) Rayleigh's equation. In this example we solve Van der Pol's equation only ; the same 
procedure can be applied to the other. The classical nonlinear differential equation of Van der 
Pol can be written as 

~ -# (1  -x2)2+x = 0 (a) 

where tt is a damping factor. This is the equation for an oscillatory system having variable 
damping. If the displacement x is small, the coefficient of 2 is negative and the damping is 
negative. If the displacement is large, damping becomes positive. The qualitative nature of the 
solution depends on the value of the parameter/~. We consider the initial values, 
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TABLE 3 

Comparison between exact solution and solution given by partition method for example 4 

Shih-Chi Chu 

First step xj 1.0 1.2 1.4 1.6 1.8 2.0 

Partition ~ yj 1 . 0 0 0 0 0  1 . 23969  1 .55591  1 .94342  2 .39769 2.91551 
method ~ y~ 1 . 0 0 0 0 0  1 .39393  1 . 76364  2 .10768  2 .43240  2.74401 

Exact ~ yj 1 . 0 0 0 0 0  1 .23968  1 . 55589  1 .94340  2 .39767 2.91548 
solution ~ y) 1 . 0 0 0 0 0  1 .39391  1 . 76362  2 .10765  2 .43237 2.74398 

xj 2.0 2.2 2.4 2.6 2.8 3.0 

Second step Partition Jyj 2 . 9 1 5 5 1  3 . 4 9 4 7 2  4 .13391  4 . 8 3 2 1 2  5 .58870 6.40320 
method [ y} 2 . 7 4 4 0 1  3 . 04695  3 .34413  3 .63741  3 .92802  4.21674 

Exact ~ [y] 2 . 9 1 5 4 8  3 .49468  4 . 13386  4 . 83206  5 .58863 6.40312 
solution (yj 2 . 7 4 3 9 8  3 . 04692  3 .34409  3 .63737  3 .92797 4.21669 

x 2 3.0 3.2 3.4 3.6 3.8 4.0 

Third step Partition ~yj 6 . 4 0 3 2 0  7 . 2 7 5 3 0  8 .20478  9 .19145  10.23519 11.33591 
method [ y} 4 . 2 1 6 7 4  4.50410 4 . 79049  5 .07613  5 .36123 5.64589 

Exact ~ ~y,j  6 . 4 0 3 1 2  7 . 2 7 5 2 2  8 .20468  9.19134 10.23508 11.33578 
solution /Ys 4 . 2 1 6 6 9  4 . 50406  4.79044 5 .07608  5 .36117 5.64584 

TABLE 4 

Solution of Van Der Pol's equation with x(O) =0, 2(0) =2 and kt=0.05. 

First tj ( 0 0.1 0.2 0.3 0.4 0.5 
step xj t 0.00000 0 . 2 0 0 1 6  0 .3 9 9 2 8  0 . 59523  0 . 78585  0.96898 

:tj 2 . 0 0 0 0 0  1 .99987  1 .97891  1 .93649  1 .87234  1.78661 

Second tj ( 0.5 0.6 0.7 0.8 0.9 1.0 
step xj l 0.96898 1 .1 4 2 4 7  1 . 3 0 4 3 0  1 .45256  1 .58553  1.70171 

~ 1 .78661 1 .6 7 9 9 3  1 .55345  1 . 40880  1 .24806  1.07366 

Third tj ( 1.0 1.1 1.2 1.3 1.4 1.5 
step xj ~ 1.70171 1 .7 9 9 8 9  1 . 8 7 9 1 0  1 .93866  1 .97817  1.99749 

2j 1 .07366  0 .8 8 8 2 9  0 . 6 9 4 7 3  0 .49581  0 . 2 9 4 1 9  0.09239 

x (o)  = o,  = 2,  a n d  = 0 . 0 5 .  

The procedure of Example 4 was applied to this problem. The numerical solution is given in 
Table 4. No  simple analytical solution of van der Pol's equation is known. However, the first 
order approximate solution [12] was employed for comparison. The difference of the two 
solutions is less than 4 percent. 

If we set # = 0 in the same computer program, the solution can be compared to the exact 
solution, since then the Eq. (a) is linear. The maximum error is not greater than 0.00001. 

Example 6. Second-Order Differential Equation with Singular Point 

L(y) = xyy"  + xy  '2 + kyy' = 0 

y(1) = 0 and y'(1) = 0 .  

I f x  -- 0, Eq. (a) reduces to 

y y ' = O  

(a) 

(b) 

(c) 
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TABLE 5 

Comparison between exact solution and solution given by partition method Jbr example 6. 
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xj 1.000 0.800 0.600 0.400 0.300 0.200 

Partition [yj 1 .00000  0 . 8 3 9 5 2  0 . 7 5 1 5 3  0.71610 0 . 7 0 9 9 7  0.70767 
method ) y} 1 .00000  0 . 6 0 9 8 7  0 .2 8 7 4 1  0 . 0 8 9 3 8  0.03804 0.01133 

Exact ~ SY~ 1 .00000  0 . 8 3 9 5 2  0 .7 5 1 5 3  0 . 7 1 6 1 0  0 . 7 0 9 9 6  0.70767 
solution (yj 1 .00000  0 . 6 0 9 8 7  0 .28741  0 . 0 8 9 3 7  0 . 0 3 8 0 3  0.01130 

xj 0.100 0.008 0.006 0.004 0.002 0.001 

Partition SYj 0 .70711  0 . 7 0 7 1 1  0 .7 0 7 1 1  0 . 70711  0 . 7 0 7 1 1  0.70711 
method ~ y} 0.00010 0.00005 0.00002 0 . 00001  0.00000 0.00000 

Exact [),j 0 .70711  0 .7 0 7 1 1  0 .7 0 7 1 1  0 . 70711  0 . 70711  0.70711 
solution ~y~ 0 .0 0 0 0 0  0.00000 0.013000 0.00000 0.00000 0.00000 

Therefore if either y or y' is zero, the other can be any arbitrary value. Hence x = 0 is a singular 
point [10]. For the numerical computations of y and y' near x = 0, k was set equal to - 3. The 
interval (0, 1) was partitioned so that points were crowded near the origin. The values of 
y j, y) and the exact solution are given in Table 5. By extrapolation, y (13) = 0.70711 and y'(0) = 0. 
These agree with the correct values. 

Conclusions 

Piecewise cubic and piecewise quintic polynomials may be used in conjunction with the parti- 
tion method and the iteration method to provide approximate solutions of boundary-value 
problems and initial-value problems of nonlinear and linear differential equations. An ad- 
vantage of the present method is that it yields directly the first order derivatives in the case of a 
piecewise cubic approximation, or the first and second derivatives in the case of a piecewise 
quintic approximation, as well as the function values at the net points. The values of the deriva- 
tives are sought in many physical problems. This method is allied closely to the popular finite- 
element method [2], but it is independent of variational formulations and physical principles. 
The convergence of the iteration process is generally fast: hence the computing time is not 
excessive. The examples that have been treated indicate that the method is comparatively 
reliable, accurate, and adaptable. The interval may be partitioned with unequal lengths so that 
the points are densest in intervals where high gradients are anticipated. 
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